Clear["Global "]
SLine = 0;

CFT and Gravity 2017

= Define g,v, a scalar product - and rules for contractions

Attributes[CenterDot] = {Orderless};
(a_+b_)-c_:=a-c+b-c
a_- (a_ b_) = a (a . b) /3 NumberQ[a]
Attributes[g] = Orderless;
dot := ((Expand[#] //. {
Z_[p 1y_[k_1»z-y,z_[p 1*>2z-2,g[u_, v_]12Z_[v_]»2z[ul, glu_, a_]
gla_, v 1o glu, vl , glu_, v 1%od, glu_, u_1 = d}) // S'imp'l.'ify) &

Warning: it does not handle mistakes in the repeated indices: see first example below. So please con-
tract indices properly in the following.

x[u] x[a] y[p] x[p] // dot

x[p] x[a] y[u] x[a] // dot

X[u] (x[u] +y[ul) // dot

X[u] (x[v] +y[v]) glu, v] // dot
glu, vl glv, u] // dot

X - xx[a]y[u]

X«X+X-Yy

X+X+X-Y

= Define 9,

der[x_][p_][expr_] takes three arguments: the point x, the direction y and the expression to be derived.
We use the command SeriesCoefficient that knows already about linearity and Leibnitz rule:

der[x_1[u_1[A_] := (A/.{
X[a_] = X[a]l +e g[u, a]l, X - X X -X+2€X[u], X-y_» x~y+ey[u]}) //
SeriesCoefficient[#, {e, 0, 1}] &

Cft exercises week 3.nb

der[x] [u] [x - x]
der[x][u][x -yl
der[x][p] [f[x-y]]

ylul f[x-y]
= Define the generators of the conformal group at point x:

Plu_1[A_] := -ider[x][u] [A]

Mlu_, v_I1[A_] := -1 (X[u] der [x] [v][A] - x[v] der[x][u][A])

Di[A_] := -Module[{A}, x[A] der[x] [A] [A]]

Ks[u_1[A_] :=214x[u] Module[{A}, x[A] der[x] [A] [A]] -1 x - xder [x] [u] [A]

= Compute the algebra by applying to a generic function.

We must choose the function to depend on the full vector x[u] rather than on x2, otherwise the rotation
generator acts trivially.

(Di[P[u] [#]] - P[u] [Di[#]] = P[u]l[#]) &[f[x - k1] // dot
(D [Ks[u][#]] - Ks[u] [Di[#]] = -Ks[u][#]) &[f[x -y, x - 2]] // dot
(Ks[uI[PIv1[#]1] -P[vI[KS[u][#]] =2g[u, vIDi[#] -2 M[u, v][#]) &[F[x -y]l] //
dot
(M[u, v1[P[a]l [#]] - P[a] [M[k, v][#]] =1 (g[u, a] P[v][#] -g[v, a] P[u] [#])) &[
fix-yll // dot
(MIu, vI[Ks[al [#]] - Ks[a]l [M[u, v][#]] =1 (g[u, a] Ks[v][#] -glv, a] Ks[u]l[#])) &[
fix-yll // dot
(Mo, BI[M[k, vI[#]] -M[u, v][M[a, B] [#]] =
i (gla, k] M[B, v1[#] +gIB, vl M[a, u] [#] -
gla, vIM[B, ul [#] - g[B, ul M[a, v][#])) &[f[x - y]] // dot

True
True
True
True
True

True

Cft exercises week 3.nb 3

Week 3 exercise 2.3.6

= a)

The expression proposed in the exercised is clearly covariant under the Poincaré group, therefore we
only need to check the behavior under inversion. Instead of using brute force, let’s follow the hints given
in the text.

Check how distances transform under inversions:

x1[u] x2[u])2__ (X101 -x2[u1)* // dot

x1l-x1 x2-.x2 x1 - x1x2 - x2

True

Check the transformation properties of V*:

X1 [p] - X3[1] _ Xa [p] - X3[H]

Vip_] = — .
dist[l, 3] dist[2, 3]

Xi[p] = X3[H] Xa[u] - X3[H]

dist[1, 3] dist[2, 3]

Btw, the Jacobian of the inversion is closely related to the inversion matrix:

Invix_1lk_, v_] :=glu, vl -2 x[ul x[vl
X - X
der [x] [u] [X[v]] = L Invix]u, v] 7/ Simplify
X - X X - X

True

This checks the transformation rule of V¥

Xi [u] dist[i, j]

Vil 7. {xi_[pu] -> ———, dist[i_, j_] ->

X5 - X5 X - Xq X5 - Xy

Inv([x3][v, u] % // dot // Expand
X3 - X3

} 7/ Expand

(% ==V[v]) /. dist[i_, j_1 > (xi-X§) - (X5 -X%;) // Simplify

X3 - X3 Xp[] X3 - X3 Xp[u] Xi - Xy X3[p] . X2 « X2 X3 [1]

dist[1l, 3] dist[2,3] dist[l,3] dist[2, 3]

X1[Vv] Xz [V]) X1 + X1 X3[V] ~

dist[l, 3] dist[2, 3] xs-xsdist[l, 3]

2 X1 - X3 X3[V] X2 « X2 X3[V] . 2 X3 - X3 X3[V]

X3~X3d'ist[l, 3} X3-X3d'ist[2, 3] X3~X3d1'5t[2,
True

This takes care of the tensor part in the transformation law of j,
All what is left is to match scaling dimensions.
The inversion is an orthogonal matrix:

Inv[x] [, v] Inv[x][v, p] // dot

glu, ol

so it has eigenvalues +1. This means

2| = ().

ox

Define the prefactors of V¥ in the correlator:

pref =dist[1, 2]1%? dist[1, 3]*3dist[2, 3]%%3;

pref must obey the following relation:
pref = pref’ (x12)™" (x22)™? (x32)" %"

dist[i, j
pref /. dist[i_, j_1 -> distii, 31
X5 - X4 Xj o Xj
% (X1 - X1) 2 (X3 - X2) 722 (X3 - x3) " (A1
% /pref // PowerExpand

Solve[Cases[%, (Xi_-Xi_)?- - a] =0, {al2, al3, a23}]

dist[1l, 3] *3 (dist[2, 3] |22

dist[1, 2])m

X1 - X1 X2 - X3 X1 - X1 X3 - X3 Xg + X2 X3 - X3

(Xl . Xl) -al2-al13-A1 (Xz . x2>—0112—oz23—A2 (X3 . X3)1—0(13—0(23—A

3]

Cft exercises week 3.nb

{{a12 > 1 (-1+a-a1-22), 013> 1 (1-a-21+n2), a23 > 1 (1-a+01-n2)}}

2 2

this coincides with the proposed form of the correlator.

2

Cft exercises week 3.nb

Ib)

The product V¥ V¥ clearly respects the tensor transformation rule, and so does g,,. On the other hand
V, V2 is invariant. The combination

Hu = Vu V= 2V Vo gy

therefore also respects the rule, and the coefficient is fixed by requiring H*,, = 0.

The only thing to be checked is again the scaling of the prefactor, and the check is almost the same as
in the spin 1 case.

= Unicity

So far we verified that a certain tensor structure is compatible with the transformation property of the
correlator. We can actually argue that there can be only one.

The argument goes as follows:

1. Use conformal transformations to send O; to the origin and O; to infinity.

2. Now the correlator only depends on x3¥, and there is a unique traceless symmetric tensor built out of
a single vector.

3. Suppose that there were two tensor structures that become degenerate when x; - 0 and x» - 0. This
is inconsistent because the conformal transformations are invertible.

= d)

Let’s build a function that applies Wick theorem (an overkill for this exercise, but useful in general).
First we implement point splitting for fields evaluated at the same point:

split[a_] :=Listee (a /. ¢[b_]1"- :> TimeseeTable[¢[b[i]], {i, 1, n}]1)

Then we define the wick function to take a list of fields.

wick[{}] :=1;
wick[{num_}]1 := num /; NumberQ[num]
wick[{a_}] :=0
wick[{num_, a__}] := numwick[{a}] /; NumberQ[num]
wick[{a_, b_}] :=(ab)
wick[a_] := Module[{aux = Delete[a, 1]},
Sum[<a[l] aux[jl) wick[Delete[aux, j11, {j, 1, Length[aux]}]]

For instance:

wick[{¢[X1], #[x2], #[X3], d[xa]}]

(P[X2] O[x3]) (D[X1] @[Xa]) + (P[X1] ¢[X3]) (D[X2] P[Xa]) + (P[X1] ¢[X2]) (P[X3] d[Xa])

We define T,, as the sum of two differential operators which act on fields.
oup 0, @ is defined via point splitting, while the second piece is a differential operator directly acting on

¢2

tiix_, y_1[u_, v_]1 =der[x] [u] [der[y] [v][#]] &;
t20x_1[u_, v_] =
-1

m ((d-2) der[x][u][der[x][v]l[#]]+glu, v]der[x][A][der[x][A][#]]) &;

Cft exercises week 3.nb

The correlator is obtained by applying these differential operator to the appropriate scalar correlators:

t1: notice that we need to subtract contractions between ¢[x] and @[y] since in T,, these fields are
normal ordered and evaluated in the same point:

split[@[x1] ¢#[Xx2] ¢[xs] d[ys]]s

wick[%] /. <6[xs] 6[ys]) »© /. (d[a_] [b_]) - o

((a-b) - (a-b))

tlpiece = t1[xs, Ys] [k, v1[%] /. {Xs > X3, Ys > X3}

2-d 2-d

norm? (Xz - X2 =2 Xz + Xs +Xs + Xs) 2 (X1 +X1-2Xy - Ys+Ys-Ys) 2 +
d

2-d

norm? (xl-x1—2xl-x5+xs-xs> 2 (XZ'XZ_ZXZ'yS+yS'yS>%

split[o[x1] #[x2] #[x]1?]
wick[%] /. ($[X[1]] [x[2]1) » O /. {X[1] » X3, X[2] » X3} /.
norm
(p[a_] o[b_1) > d-2
((a-b) - (a-b)) =

t2piece = t2[x3] [, V] [%] // dot;

{#[x1], d[x2], &[x[1]], &[x[2]]}

2-d 2-d

2norm? (X3 - X3 -2 X1 - X3+ X3 - X3) 2 (X5 - Xo—2 Xy - X3+ X3 - X3) 2
1 1 1 3 3 3 2 2 2 3 3 3

tcorr = tlpiece + t2piece;

Now we compare this result with the prediction from conformal invariance.

1
(vm VIv] - = Vial Vial gk, v1 // dot);

Cio7 %

Al+A2-A+2 Al+A-A2-2 A2+A-A1-2

dist[1l, 2] z dist[l,3] = dist[2,3] :

dist[i_, J_1 - (Xi-Xj) - (Xi-X5)3
zero = % - tcorr // Expand //
Collect[#, {g[u, v]l, Xa[r] xa[v], Xa[u] Xa[v], X3[u] X3[v], Xa[u] X2[Vv],
X1[H] x3[v], X2 [u] X3[v], X1 [v] X1 [u], X2[v] X2[u], X3[v] X3s[u], Xa[Vv] X2 [u],
X1[v] X3[u], Xa[v] x3[u]}, f[#] &] & // Cases[#, f[a_] » a, =] &

1 5 2 ~1-4
{- 2 norm? () () e
-1+d
(X2 - x2-2x + X3 - X3) -3, 2 (
2 2 2 3 3 14d
X2-X Ci2T
. + + d - d ’ ’ }
large output show less show more show all set size limit...

What we did here is to subtract the expected form to the computed one: so zero should be zero.
Each tensor structure gives an independent equation (at least in principle), so we built a list of the

Cft exercises week 3.nb

coefficients of all the tensor structures.

The result is quite complicated, so we can introduce a bit of notation to simplify it:

zerosimp =

-1
Zero /. Xi_ - Xj —>—(d'ist['i,j]-x1--xi—xj-xj) /. dist[i_, i_]1 >0 // Simplify
n . 2

1
[——— dist[1, 277 212) giser1, 373 C9AAY gist(2, 3] 942
2(—l+d)d

A+l [+A2

(—(—2+d)2dnorm2d‘ist[1 277 @18 gicr (1, 3175 dist[2, 3] % -

-+ d+a1

2(71+d) dist[1l, 2]%/2dist[1, 3] d'lst[z 3172 ciaT

)

1
dist[l, 2]z "2019) dice[1, 37z C2 948 gige(2, 3]s (29ae2)
2(—l+d

A+Al A+A2

((—2+d)2dnorm2d'ist[l 273 @81482) gicr 1 31%% dist[2, 3] ¢ +

d+a2 d+al

2 (-1+d) dist[1, 2]**dist[1, 3] = dist[2,3] 2 ci7,

-2-A1-A2)

1 L g . L g
— ~ dist[1,2]: dist[l, 312 "9V distr2, 372 442

2 (—l+d

(2+A1+A2) . AxAl axa2

dist[1l, 3] 2 dist[2, 3] 2

(7(72+d) dnorm? dist[1, 2]

d+al

d+a2
2 (-1+d) dist[1, 2]*?dist[1, 3] = dist[2,3] z cCip7

)

1
— ddst[l, 2] A8 gigry1, 375 (90D gise[2, 372 C9AAY
2(71+d

A+AL A+A2
(—(—2+d)2dnorm2d'ist[l 277 @A) qicr 1, 315 dist[2, 3] ¢ -

d+n2 dul
2(—1+d)d-ist[l,2]A/2d'ist[l,3] dist[2, 3] 2 cio7
1 LI
—— dist[l, 2]7 A2 gigt(1, 373 290D gigg (2, 373 (2-d-A-8D)

2 (71+d

A+AL A+A2

((—2+d)2dnorm2d1’st[l 277 @A) gicery 315 dist[2, 3] F «

7u1

2 (-1+d) dist[1, 2]*?dist[1, 3] d'lst[z 3] 2 cio7

dist[l, 217 "2 dise(1, 31§ (-2-d-a-al)
2 (—l+d>
(dist[1, 3] -dist[2, 1)d1st[2 3]z (9-8-82)

(2+A1+A2) . axal axh2

dist[1l, 3] = dist[2, 3] 2 ~+

((72+d)2d norm? dist[1, 2]z

d+a2. d+al.

2 (-1+d) dist[1, 2]*2dist[1, 3] = dist[2, 3] : clzT),

-2-Al1-

1
L dist[l, 2]: 2) dist[l, 3]z "9AAY (dist[1, 3] -dist[2, 3])
2 (-1+d)

A+AL

dist[2, 3]2 (2922 ((—2+d)2dnorm2d'ist[l 273 2A1482) iy 315

A+A2 d+A2 d+Al

dist[2, 3] 2 +2 (-1+d) dist[l, 2]%?dist[1, 3] 2 dist[2, 31Tc12T) s

 — dist[1, 2]7 A2 gigeq1, 373 (29AAl
2 (-1+d)

Cft exercises week 3.nb

(dist[1, 3] -dist[2, 3]) d1st[2 3]z (9-8-82)

A+A A+A2

dist[1, 3] 2 1d‘lst[z 3] 2 +

(2+A1+A2)

((72+d)2d norm? dist[1, 2}

d+a2 d+al

2 (-1+d) dist[1, 2]*2dist[1, 3] = dist[2, 3]Tc12T),

—2-A1- (-d-A-A1)

1 .
L dist[l, 2]:

2 dist[1, 3]
2 (-1+d)

(dist[1, 3] -dist[2, 3])

A+AL

dist[1, 3] =

(2+A1+A2)

dist[2, 3]z (242 ((—2+d)2dnorm2d'ist[l 2]%

A+A2 _1

dist[2,3]T+2(-1+d) dist[1l, 2]%?dist[1, 31 d'lst[2 31 2 clzT),

~2-A1-42) ;7 (-2-d-A-Al)

dist[l, 2]

dist[1, 3]
2 (-1+d)

(dist[1, 3] -dist[2, 3])2d1'st[2 2 7 (2l

NN A+A2

dist[1, 3]fdist[2, 3] +

(2+A1+A2)

((—2+d)2d norm? dist[l, 2]z

ul

2 (-1+d) dist[1, 2]**dist[1, 3] d'|st[2 3] =z chT)}

Still long, but much better: in particular the first equation looks very promising. Let’s isolate it and see
how many parameters it determines:

zerosimp[1l, -11 // Expand // Simplify
#I1]
#I21

dimensions = Solve[%, {Al, A2, A}][1]

%%% /. dimensions // Simplify

cl2t = Solve[% = 0, c1o 7] [1]

% // Listee# & // & // Cases[#, dist[i_, j_1% » a = 0] &

A+A2

A+AL
(2+01+02) gist[1, 3] 2 dist[2, 3] 2 -

- (72+d)2 dnorm? dist[1, 2}
du’\l

2 (-1+d) dist[1, 2]~2dist([1, 3175 dist[2, 3] 3 ciat

A+ AL
2

{_

N|l>
N||-

(2+21+42) =0, LT (-d-a2) =0, 1 (-d-a1) + — 0}
2 2

{Alei(—2+d),A2—>§(—2+d),Aed}

1 3d

_dist[l, 2192 dist[1, 3] s dist[2, 3] i s ((72+d)2d norm?+2 (-1 +d) cm)

(72+d>2dnorm2
2 (—l+d)

}

{C12T - =

So one equation already determines both the scaling dimensions and the coefficient of the three point
function. All the others better be automatically satisfied:

zero /. dimensions /. cl12t // Simplify

{0,0,0,0,0,0,0,0,0,0}

